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Abstract

A procedure is proposed which allows for bridging stress determination from a measured R-curve. An application of the method
is illustrated for a magnesium aluminate spinel ceramic that exhibits an extended linear R-curve behavior. The analytical determi-

nation of small displacement behavior and the treatment for large displacements using cubic splines is outlined in detail. After an
initial increase, bridging stress values are found to decrease for larger crack opening displacements. # 2000 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Many coarse-grained ceramic materials exhibit R-
curve behavior that is related to grain bridging in the
wake of an advancing crack. This fact has been proved
experimentally by re-notching experiments1,2 and by in-
situ observations under the electron microscope.3,4 The
observed R-curves (or KR-curves) have often been
described by a relation KR=f(�a). However, it has been
shown by experimental5 and theoretical6 investigations
that the R-curve is not a unique material property. The
shape of the curve depends on the geometry of the test
specimens, the initial crack depth, the type of loading
(tension, bending, point forces) and on the particular
type of crack extension (stable and subcritical crack
propagation).7

Although grain bridging is a very localized phenom-
enon, the e�ect has been more globally modeled in
terms of bridging stresses, denoted �br. These stresses
depend only on the crack face separation, �, and when
expressed in the form of �br=f(�), this relationship
represents a true material property, unin¯uenced by test
conditions. Many di�erent experimental methods have
been applied to determine the bridging stress in this
form. In Refs. 8±11 bridging stresses were evaluated

from the di�erence between crack opening pro®les with
and without bridging e�ects. A method to determine the
bridging stresses from R-curves was proposed in Ref. 12

for a prescribed case of bridging in which the free para-
meters were ascertained. In Ref. 13 the load vs. dis-
placement curve of controlled fracture tests was used
and in Ref. 14 bridging stresses were derived from the
R-curve without any assumptions on the form of the
bridging function. In this case, the unknown stress dis-
tribution along the crack was modeled by a polynomial
and after evaluation of the a priori unknown coe�-
cients, the bridging stresses were obtained. The deter-
mination of a bridging function was also performed for
ductile metal bridges15 and was successfully obtained
for chevron-notched specimens by Sarra®-Nour et al.16,17

In addition, White and Hay18ÿ20 successfully developed a
method known as the post-fracture tensile (PFT) techni-
que for the direct measurement of crack face interactions.
In the present investigation, a procedure will be

detailed, which enables one to determine the bridging
stress function from given R-curve data by a cubic
spline routine. The procedure is then applied to the R-
curve of a spinel microstructure.

2. Experimental results

R-curve measurements on magnesium aluminate
spinel (MgAl2O4) were performed by Olasz et al.21. This
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material has a cubic crystal structure. Therefore, no
residual stresses are present in the microstructure at
room temperature and a bridging zone develops solely
from the grain geometry. In Fig. 1, the grain size dis-
tribution of this material is presented where the average
grain size is 230 mm. Double cantilever beam (DCB)
tests were performed with this material and a schematic
of the specimen is shown in Fig. 2, where H=8.5 mm,
B=4 mm, L=48 mm and a0=13 mm.
The resulting R-curve is plotted in Fig. 3. This curve

shows a pronounced initial straight line behavior which
extends over about 6 mm crack extension due to the
large grain size. We ®nd for this range that

KR � KI0 ÿ Kbr; �1�

where the bridging stress intensity factor

Kbr � C�a; C � ÿ0:214MPa
����
m
p

=mm �2�

and the stress intensity factor at the onset of crack pro-
pagation, KI0=1.45 MPa

����
m
p

.

3. Basic relations

If the relationship between the bridging stress, sbr,
and the crack face separation, d, is available, fracture
mechanics methods enable the computation of the rela-
ted R-curve. For example, Fig. 4 shows the stress dis-
tribution along the crack length of a material that
exhibits a bridging zone. Here, the total stress on the
crack tip is the sum of the applied stress and the brid-
ging stress, sbr, i.e.

��x� � �appl�x� � �br�x�: �3�

These stresses are responsible for the stress intensity
factor, which is given in terms of the fracture mechanics
weight function, h,22 as

KI �
�a
0

h�x=a; a=W� ��x� dx: �4�

The weight function, h(x,a), is a function of the crack
length, a, and the coordinate, x. It depends on the geometry

Fig. 1. Grain size distribution of spine.21

Fig. 2. Geometric data of the DCB-specimen. Fig. 4. Crack with arbitary crack face loading �(w).

Fig. 3. R-curve for spinel from DCB tests.21
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of the component, but is independent of the applied
loading. The weight function for the DCB specimen
reads as23

h �
�����
12

H

r
aÿ x

H
� 0:68

h i
�

�����������������
2

��aÿ x�

s
exp ÿ

�����������������
12

aÿ x

H

r� �
;

�5�

where H is the half height as de®ned in Fig. 2. The
weight function for the DCB specimen used in the
experiments is shown in Fig. 5 and the applied stress
intensity factor is

Kappl � h�0; a�P=B: �6�

Here h(0, a) is the value of the weight function at loca-
tion x � 0, i.e where the applied forces P act.
The total displacements of the crack surface, �, can be

derived from prior knowledge of the weight function
and stress intensity factor for a given stress distribution
�(x) as proposed by Rice24

h�x; a� � E0

KI

@��x; a�
@a

: �7�

Integration of this formula yields the following expression
for �:

��x� � 1

E0

�a
x

h�x; a0�K�a0� da0: �8�

If the stress intensity factor K(a0) is caused by dis-
tributed stresses �, we have to apply Eq. (4) which
results in

� � 1

E0

�a
x

h�x; a0�
�a0
0

h�x0; a0���x0� dx0
� �

da0; �9�

where the displacement has been computed at x, and x0

is the location of the stress, �. Eq. (5) can also be
derived from Castigliano's theorem (see Ref. 25).
The stress intensity factors describing the R-curve

behavior can be obtained in the following manner:
The total crack opening displacements,

� � �appl � �br; �10�

result from the solution of the integral equation

��x� � 1

E0

�a
x

h�x; a0��a0
0

h�x0; a0���appl�x0� � �br���x0��� dx0
� �

da0:
�11�

The solution to this equation may be determined by
several methods. The simplest one is an iterative
approximation. Initially, the applied stress, �appl, is
introduced into the integrand to yield the crack face
separation, �appl. A ®rst approximation for the bridging
stresses, �br, is then obtained by substituting �appl into
the bridging stress law. The bridging stresses obtained
are then reintroduced into Eq. (11) and the procedure is
repeated until �(x) is constant.
The related bridging stress intensity factor is given by

Kbr �
�a
a0

h�x; a� �br�x� dx; �12�

and the applied stress intensity factor Kappl as

Kappl �
�a
0

h�x; a� �appl�x� dx: �13�

Finally, the crack-tip stress intensity factor is given by

Ktip � Kappl � Kbr: �14�

4. Evaluation of the experimental results

Due to the long linear range of the R-curve in Fig. 3,
a very simple approach is possible to obtain the brid-
ging stresses. From Eqs. (2), (5) and (12) we can con-
clude that for crack extensions within the straight part
of the R-curve, the distribution of the bridging stress
must be reciprocal to the weight function, i.e.�a
a0

h�x; a� �br dx � C�aÿ a0� () h�x; a� �br

� C() �br � C=h �15�
Fig. 5. Weight function for the DCB-specimen used for the experi-

ments.
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The resulting bridging stresses, plotted in Fig. 6 as a
function of the coordinate x, are determined by com-
bining Eqs. (5) and (15).
The corresponding crack opening displacements were

computed by introducing Kapp, from Eq. (6), into Eq.
(8) and �br from Eq. (15) into Eq. (9). The displace-
ments, �appl and �br, are shown in Fig. 7 together with
the total crack pro®le, �, obtained from Eq. (12).
In this context, it should be noted that in the litera-

ture, often only near-tip solutions for the crack opening
displacement are used for d. It may be concluded from
Fig. 7, that such approximations are not appropriate for
accurate displacement calculations. This will be shown
in more detail in the Appendix.
The evaluation of bridging stresses from R-curve data

is based on the solution of Eqs. (11)±(14). The numerical
strategy consists of the following steps:

1. For small displacements (corresponding to crack
extensions where �a45 mm) the bridging relation
results from Eq. (15) with the displacements com-
puted by Eq. (9). The result is shown in Fig. 8a.

2. For larger displacements, the �br(�) function is
represented by the stress values at the sampling
points �1 and �2, which are interpolated by cubic
splines (Fig. 8b).

3. The bridging stresses (see Fig. 8b) in the range
�44 mm were computed for chosen values of
�br(�1) and �br(�2). The integral equation was
solved and the crack pro®le and the bridging stress
distribution were obtained. From Eq. (12) the
associated bridging stress intensity factor, Kbr, was
calculated and using Eq. (1) the R-curve values,
KR, were obtained for a number of selected �a.
The computed KR values were then compared to
the experimental data. The bridging stress values
at �1 and �2 were changed systematically by use of
the Harwell computer subroutine, VA02AD, until
minimum deviations between the computed and
measured KR were found. The corresponding
bridging stresses at �1 and �2 then establish the
bridging stress function, �br(�), for larger crack
opening displacements (Fig. 8c). Fig. 9 gives a
comparison of the computed KR-values with the
measured ones.

It should be mentioned that the bridging stresses for
any R-curve can be determined using this technique.
The initial part of the bridging stress function may also
be represented by cubic splines. Unfortunately, the
number of sampling points must be increased for this
purpose, which drastically increases the numerical e�ort.

Fig. 6. Bridging stress distribution along the crack for aÿa0=5 mm.

Fig. 8. Determination of the bridging relation: (a) solution for small

displacements from linear part of the R-curve, (b) representation of

relation for large displacements by cubic splines (two sampling points),

(c) ®nal result.

Fig. 7. Total crack pro®le d composed by the applied and the bridging

displacements.
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5. Summary and conclusions

A procedure is proposed which allows for the deter-
mination of the bridging stress function from a given R-
curve. An application of the method is illustrated for a
coarse-grained spinel exhibiting an extended linear R-
curve behavior. For this special case, an analytical
solution for the small displacement behavior is applied.
For the treatment of large displacements the bridging
function in the form of �br=f(�) was described by (a
priori unknown) stress values at two sampling points, �1
and �2, which were interpolated by cubic splines. Appli-
cation of a ®tting procedure allowed the unknown stress
values to be determined. As a result, an initially
increasing bridging stress is found which decreases at
larger crack opening displacements.

Appendix. Accuracy of approximate crack opening
displacement ®elds

The correct displacements �(x) for any prescribed
stress distribution can be obtained by evaluating Eq. (9).
Nevertheless, one will often ®nd approximations which
are neither in¯uenced by the shape of the stress dis-
tribution nor by the geometry of the test specimen. Such
estimations, describing the near-tip displacements, are
not appropriate to evaluate the bridging stresses. The
poor agreement of such attempts with the exact solution
will be demonstrated here, for di�erent degrees of
approximation. The basis of each estimation will be
Eq. (8).
As a consequence of the Williams stress function [26]

for edge-cracked specimens, the weight function may be
expressed as

h � htip �O�aÿ x�1=2; htip �
�����������������

2

��aÿ x�

s
�A1�

where htip de®nes the singular near tip term.

Since the singular term must be present in all weight
functions independent of the special specimen size and
shape, let us ®rst replace the correct weight function
occurring in Eq. (8) by the near-tip term, i.e.

��x� � 1

E0

�a
x

�����������������
2

��aÿ x�

s
K�a0� da0: �A2�

The main contribution to the integral arises for a0!a.
Therefore, let us replace K(a0)=K(a) in Eq. (A2) with
the resulting near-tip solution

�0 �
���
8

�

r
KI

E0
�����������
aÿ x
p �A3�

which is well-known in fracture mechanics.27 Another
often used near-tip solution has been proposed by
Barenblatt28 which reads in our coordinate system

�1 �
���
2

�

r
Ktip

E0
�����������
aÿ x
p � 4

�E0

�a
a0

�br

������������
aÿ x

aÿ x0

r
ÿ 1

2 ln

������������
aÿ x0
p � �����������

aÿ x
p������������

aÿ x0
p ÿ �����������

aÿ x
p

�����
�����

 !" #
dx0

�A4�

For a further improvement of the near-tip solutions let
us make use of the usual representation of stress inten-
sity factors,

K � ��Y ���
a
p
; �A5�

with a characteristic stress �* and a geometric function
Y depending on specimen geometry, crack size and spe-
cial loading situation. Eq. (A5) gives rise to an approx-
imation of K(a0) for a0!a of

K�a0�
K�a� �

����
a0

a

r
; �A6�

which may be used in Eq. (8). Together with use of the
correct weight function we obtain

�2 � K���
a
p

E0

�a
x

h�x; a0�
����
a0
p

da0 �A7�

As an example of application let us use the stress dis-
tribution given by Eq. (15). For these stresses the dis-
placements were computed with Eq. (9) for a crack
propagation of �a=5 mm and Ktip=KI0.
The approximations �0, �1, and �2 are compared in

Fig. A1 with the result � from Eq. (9). It can be seen
that the approximations �0 and �1 show large deviations
from the true crack pro®le. In the case of approxima-
tion �2 the deviations are relatively small. In Fig. A1b

Fig. 9. R-curve data computed from the bringing stress relation Fig.

8c (squares) compared with the measurements (circles).
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the circles represent those points where the approxima-
tions deviate by 5% from the correct result. Whereas
this error margin is reached for approximations �0 and
�1 at about 0.6 mm distance from the crack tip, this
distance increases in case of �2 signi®cantly to 1.7 mm.
As the consequence of the considerations outlined

previously, it is recommended to compute the correct
displacements and to avoid the application of near-tip
displacement ®elds �0 and �1 to the whole crack.
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